If it's not what You are looking for type in the equation solver your own equation and let us solve it.
52x-0.8x^2=600
We move all terms to the left:
52x-0.8x^2-(600)=0
a = -0.8; b = 52; c = -600;
Δ = b2-4ac
Δ = 522-4·(-0.8)·(-600)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-28}{2*-0.8}=\frac{-80}{-1.6} =+50 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+28}{2*-0.8}=\frac{-24}{-1.6} =+15 $
| 2/5a=40 | | 4(x+4=32 | | c+26=53 | | X-+y=1 | | 2d-15=0.8 | | 9.99-x=0.60 | | 14e=882 | | 9.99-x=0.40 | | 10x-20=2x+1 | | 48x-0.8x^2=400 | | 0=3x(x^2-4x-2) | | 4x-83=3x-35 | | 32x-0.8x^2=240 | | 5x-15=8x-8 | | (7x+5)+(4x-7)=0 | | b-5=- | | 152x-16x^2=240 | | 6k+12-6=-18 | | -30=11x+x^2 | | 2y^-y-1=0 | | 432=72k | | 2x/3-x/7=17 | | 4c-c^2=0 | | 15b+b^2+50=0 | | 2x-4+5=-3x+3 | | 128x-16x^2=208 | | 32x-180=20-8x | | 4K-12=13-k | | 3x+21+3x-28=180 | | 4−2x·4x=64 | | -1x+2(4x+10)=6 | | 4b-4=8b+12 |